45 research outputs found

    DAC: The Double Actor-Critic Architecture for Learning Options

    Full text link
    We reformulate the option framework as two parallel augmented MDPs. Under this novel formulation, all policy optimization algorithms can be used off the shelf to learn intra-option policies, option termination conditions, and a master policy over options. We apply an actor-critic algorithm on each augmented MDP, yielding the Double Actor-Critic (DAC) architecture. Furthermore, we show that, when state-value functions are used as critics, one critic can be expressed in terms of the other, and hence only one critic is necessary. We conduct an empirical study on challenging robot simulation tasks. In a transfer learning setting, DAC outperforms both its hierarchy-free counterpart and previous gradient-based option learning algorithms.Comment: NeurIPS 201

    Generalized Off-Policy Actor-Critic

    Full text link
    We propose a new objective, the counterfactual objective, unifying existing objectives for off-policy policy gradient algorithms in the continuing reinforcement learning (RL) setting. Compared to the commonly used excursion objective, which can be misleading about the performance of the target policy when deployed, our new objective better predicts such performance. We prove the Generalized Off-Policy Policy Gradient Theorem to compute the policy gradient of the counterfactual objective and use an emphatic approach to get an unbiased sample from this policy gradient, yielding the Generalized Off-Policy Actor-Critic (Geoff-PAC) algorithm. We demonstrate the merits of Geoff-PAC over existing algorithms in Mujoco robot simulation tasks, the first empirical success of emphatic algorithms in prevailing deep RL benchmarks.Comment: NeurIPS 201

    Deep Residual Reinforcement Learning

    Full text link
    We revisit residual algorithms in both model-free and model-based reinforcement learning settings. We propose the bidirectional target network technique to stabilize residual algorithms, yielding a residual version of DDPG that significantly outperforms vanilla DDPG in the DeepMind Control Suite benchmark. Moreover, we find the residual algorithm an effective approach to the distribution mismatch problem in model-based planning. Compared with the existing TD(kk) method, our residual-based method makes weaker assumptions about the model and yields a greater performance boost.Comment: AAMAS 202

    Direct Gradient Temporal Difference Learning

    Full text link
    Off-policy learning enables a reinforcement learning (RL) agent to reason counterfactually about policies that are not executed and is one of the most important ideas in RL. It, however, can lead to instability when combined with function approximation and bootstrapping, two arguably indispensable ingredients for large-scale reinforcement learning. This is the notorious deadly triad. Gradient Temporal Difference (GTD) is one powerful tool to solve the deadly triad. Its success results from solving a doubling sampling issue indirectly with weight duplication or Fenchel duality. In this paper, we instead propose a direct method to solve the double sampling issue by simply using two samples in a Markovian data stream with an increasing gap. The resulting algorithm is as computationally efficient as GTD but gets rid of GTD's extra weights. The only price we pay is a logarithmically increasing memory as time progresses. We provide both asymptotic and finite sample analysis, where the convergence rate is on-par with the canonical on-policy temporal difference learning. Key to our analysis is a novel refined discretization of limiting ODEs.Comment: Submitted to JMLR in Apr 202

    GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values

    Full text link
    We present GradientDICE for estimating the density ratio between the state distribution of the target policy and the sampling distribution in off-policy reinforcement learning. GradientDICE fixes several problems of GenDICE (Zhang et al., 2020), the state-of-the-art for estimating such density ratios. Namely, the optimization problem in GenDICE is not a convex-concave saddle-point problem once nonlinearity in optimization variable parameterization is introduced to ensure positivity, so any primal-dual algorithm is not guaranteed to converge or find the desired solution. However, such nonlinearity is essential to ensure the consistency of GenDICE even with a tabular representation. This is a fundamental contradiction, resulting from GenDICE's original formulation of the optimization problem. In GradientDICE, we optimize a different objective from GenDICE by using the Perron-Frobenius theorem and eliminating GenDICE's use of divergence. Consequently, nonlinearity in parameterization is not necessary for GradientDICE, which is provably convergent under linear function approximation.Comment: ICML 202

    Breaking the Deadly Triad with a Target Network

    Full text link
    The deadly triad refers to the instability of a reinforcement learning algorithm when it employs off-policy learning, function approximation, and bootstrapping simultaneously. In this paper, we investigate the target network as a tool for breaking the deadly triad, providing theoretical support for the conventional wisdom that a target network stabilizes training. We first propose and analyze a novel target network update rule which augments the commonly used Polyak-averaging style update with two projections. We then apply the target network and ridge regularization in several divergent algorithms and show their convergence to regularized TD fixed points. Those algorithms are off-policy with linear function approximation and bootstrapping, spanning both policy evaluation and control, as well as both discounted and average-reward settings. In particular, we provide the first convergent linear QQ-learning algorithms under nonrestrictive and changing behavior policies without bi-level optimization.Comment: ICML 202
    corecore